回主页
博古文刊 · 预防医学
目录
位置: > 古代文学 > 古代医书 > 预防医学 >

十九·(5)假设检验中的两类错误及注意事项

一、第一类错误与第二类错误

假设检验时,根据检验结果作出的判断,即拒绝H0或不拒绝H0,并不是百分之百的正确,可能发生两种错误。下面以样本均数与总体均数比较的t检验为例说明。①拒绝了实际上成立的H0,即样本原本来自μ=μ0的总体,由于抽样的偶然性得到了较大的t值,因t≥t0.05(v)按α=0.05检验水准拒绝了H0,而接受了H1(μ≠μ0),这类错误为第一类错误(或I型错误,type Ierror),如图19-3B。理论上犯第一类错误的概率为α,若α=0.05,那末,犯第一类错误的概率为0.05.②不拒绝实际上不成立的H0,即样本原本来自μ≠μ0的总体,H0:μ=μ0实际上是不成立的,但由于抽样的偶然性,得到了较小的t值,因t<t0.05(v),按α=0.05检验水准不拒绝H0,这类错误称为第二类错误(或Ⅱ型错误,type Ⅱ error),如图19-3C。犯第二类错误的概率为β,β值的大小很难确切地估计,但知道在样本含量不变的前提下,α越小,β越大;反之,α越大,β越小。同时减少α和β的唯一方法是增加样本含量,因为增加了样本的含量后,均数的抽样误差小,样本均数的代表性强,也就是样本均数较接近总体均数,因而可使犯第一类错误和第二类错误的概率减少。

yufangyixue087.jpg

图19-3 Ⅰ型错误与Ⅱ型错误的关系

二、假设检验时应注意的事项

(一)要有严密的抽样研究设计;样本必须是从同质总体中随机抽取的;要保证组间的均衡性和资料的可比性。

(二)根据现有的资料的性质、设计类型、样本含量大小正确选用检验方法。

(三)对差别有无统计学意义的判断不能绝对化,因检验水准只是人为规定的界限,是相对的。差别有统计学意义时,是指无效假设H0被接受的可能性只有5%或不到5%,甚至不到1%,根据小概率事件一次不可能拒H0,但尚不能排除有5%或1%出现的可能,所以可能产生第一类错误;同样,若不拒绝H0,可能产生第二类错误。

(四)统计学上差别显著与否,与实际意义是有区别的。如应用某药治疗高血压,平均降低舒张压0.5kPa,并得出差别有高度统计学意义的结论。从统计学角度,说明该药有降压作用,但实际上,降低0.5kPa是无临床意义。因此要结合专业作出恰如其分的结论。

推荐阅读

中药基本理论知识> 中医养生学> 中医基础理论> 本草纲目> 伤寒杂病论> 药性赋白话解> 黄帝内经> 黄帝内经白话文> 伤寒论> 神农本草经>

阅读分类导航

唐诗四大文学名著宋词诸子百家史书古代医书蒙学易经书籍古代兵书古典侠义小说